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prop ii 1 Let a EPLn L EDre and my muffler lat th Then
a The The Set of FEZ enrich that at FL cpen is the interval
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b For ex cGA807 the map Ed LCN UMM 112 is an
whgeutrion ng pe t sdoLef p In particular the function b Mf
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and results of prop36 b for simple root 2 the prop holds
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for every 2 to www
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Fon n Ept Recall that PLN is W invariant
An element at P is called nondegenerate with respect to a ifeither a D or where as a and for every connected component 3
ofSupp in d one has

iii 2 l s n il en di 707 to
Pbr Recall For a Ikr 2 EQ we define the support of acwritten support to be the hubdiagram of SEA which consists
of the verities is emeh that by40 and of all the edges
joining these vertices
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Lem ii 2 Every weight of the GCA module is nondegenerate
ne v et h

proof towppose what a cpom Ah let 3 be a connected component
of Supp in n Denote by n CS the subalgebra of n generated
by fi sit o ES
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a Pen W f a Ept I is nondegenerate with respect to n 7
b If if s di o C SLA is a disjoint union of diagramsofy iritetype.tk Pit W a cPt la En
proof The incursion c in a and b follows from Cor20.1 and

Lemuria
1 Recall Corto 1 If a Gpt then any ne pca is in equivalent

to a unique µ c Pt Apca 1
The other inclusion in b follows from that of aIndeed if d EPy and a ex fb where f3bQq then CpsLou Eo for
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which implies that a je nondegenerate ne V t n

It remains to shove that gym a 2 Ept Where de Ekiti ki 20
hr 0 and 3 n il La di 07 10 for every connected component
3 of Suppa then n line o of a
bet 12 1 REQ11 VEL and n r Epca Y then bet Rs is finite
por Lenny
and the union of supports of its elements has a nonempty
intersection with each connected component of supp2ii e jfajsuppy 340 where S is anyconnected comp of 3uppa
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suppose that f34L Then
iii v 4 n p di IEPLN if Psi MiYet 3 jt m7 let R be a connected component of

Kruppa IS We deduce from ch v 4 and prop11.1 a
ii v 5 213 hi Z LA di and 22 di E s a 2i Ofreps

Terme n a 12 is weightT Cor3.6 a If a cPLA and
a Tai pen creep ex tr 4 Pca so at zo creep Eo7

set f3 Fermidi L Fep ki mi Lv Then iii 2.3 and Clint
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